Coverings and crossed modules of topological groups with operations
نویسنده
چکیده
It is a well-known result of the covering groups that a subgroup G of the fundamental group at the identity of a semilocally simply connected topological group determines a covering morphism of topological groups with characteristic group G . In this paper we generalize this result to a large class of algebraic objects called topological groups with operations, including topological groups. We also prove that the crossed modules and internal categories within topological groups with operations are equivalent. This equivalence enables us to introduce the cover of crossed modules within topological groups with operations. Finally, we draw relations between the coverings of an internal groupoid within topological groups with operations and those of the corresponding crossed module.
منابع مشابه
Covering Groups of Non-connected Topological Groups Revisited
All spaces are assumed to be locally path connected and semi-locally 1-connected. Let X be a connected topological group with identity e, and let p : X̃ → X be the universal cover of the underlying space of X. It follows easily from classical properties of lifting maps to covering spaces that for any point ẽ in X̃ with pẽ = e there is a unique structure of topological group on X̃ such that ẽ is th...
متن کاملOn morphisms of crossed polymodules
In this paper, we prove that the category of crossed polymodules (i.e. crossed modules of polygroups) and their morphisms is finitely complete. We, therefore, generalize the group theoretical case of this completeness property of crossed modules.
متن کاملCrossed squares, crossed modules over groupoids and cat$^{bf {1-2}}-$groupoids
The aim of this paper is to introduce the notion of cat$^{bf {1}}-$groupoids which are the groupoid version of cat$^{bf {1}}-$groups and to prove the categorical equivalence between crossed modules over groupoids and cat$^{bf {1}}-$groupoids. In section 4 we introduce the notions of crossed squares over groupoids and of cat$^{bf {2}}-$groupoids, and then we show their categories are equivalent....
متن کاملThe category of generalized crossed modules
In the definition of a crossed module $(T,G,rho)$, the actions of the group $T$ and $G$ on themselves are given by conjugation. In this paper, we consider these actions to be arbitrary and thus generalize the concept of ordinary crossed module. Therefore, we get the category ${bf GCM}$, of all generalized crossed modules and generalized crossed module morphisms between them, and investigate som...
متن کاملALGEBRAS WITH CYCLE-FINITE STRONGLY SIMPLY CONNECTED GALOIS COVERINGS
Let $A$ be a nite dimensional $k-$algebra and $R$ be a locally bounded category such that $R rightarrow R/G = A$ is a Galois covering dened by the action of a torsion-free group of automorphisms of $R$. Following [30], we provide criteria on the convex subcategories of a strongly simply connected category R in order to be a cycle- nite category and describe the module category of $A$. We p...
متن کامل